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General behavior of the quenched averaged spectral density with a change
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The behavior of the ensemble-averaged spectral density (G(z)) for a given eigenvalue problem
(26:5 —®:5)y; = O with the random matrix ®, distributed by the probability P(®), will be examined.
By using the replica method, the change of (G(z)) for an infinitesimal neighboring distribution is
calculated and, as a result, it was found that for systems with a higher disorder of the random matrix
& the averaged spectral density increases for very small and very large values of z, respectively.

PACS number(s): 02.50.—r, 05.90.4+m, 31.15.4+q

I. INTRODUCTION

For many physical problems, but also for other natural
scientific and technical problems, the determination of
the eigenvalue spectrum for an eigenequation

(2635 — @55)y; =0, (1)

in which @ is a symmetric N x N matrix, is a central
question. For a sufficiently small N there exist well-
known analytical and numerical methods for the solution
of (1). For large N an analytical solution of (1) is pos-
sible in few cases (see, for example, the exact solution
of the eigenvalue spectrum for an oscillator in quantum
mechanics), but for many cases there is only a numerical
solution [1,2] with a sufficiently small margin of error.
To characterize the spectra of eigenvalues it is reasonable
to use the spectral density
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(Aiy @ = 1,...,N) is the set of the eigenvalues of Eq.
(1). For many statistical problems the matrix ® is a
stochastic object, which is realized with the probability
distribution P(®). This distribution can be very compli-
cated; for example, in the theory of lattice dynamics, in
which @ is the dynamic matrix (3], the function P must
guarantee that ® is always a positive-definite matrix.

In such cases it is of interest, from a physical point of
view, to determine the average spectral density of (1).
The average is performed over an ensemble of matrices
@, which are distributed with the probability distribution
P(®). Formally Eq. (1) can transformed into

(2655 — (Dy;) — A®45)y; =0, (3)
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in which (@) is the ensemble average of ®, and A® is
the deviation of the actual values from the averages ones.
By analogy to the perturbation theory (®) is defined to
be the undisturbed reference matrix and (z — (®))y =0
is the undisturbed reference eigenvalue problem, whereas
A® is the perturbation of the reference problem (with
(A®) = 0). The determination of the ensemble-averaged
spectral density by numerical methods [4,5] is possible at
a high expense of computation time and computer mem-
ory and only for relatively simple distributions P(®).
Analytical methods exist for special Gauss-distributed
matrices [6], and solutions, based on the perturbation
theory, are possible for small deviations A® [7].

The aim of the following calculations is the determi-
nation of general information concerning the behavior of
the averaged spectral density by a change of the prob-
ability distribution P(®) under the restriction that all
P(®) generate the same average (®), e.g., the same ref-
erence problem. Using general thermodynamical meth-
ods for excitations in an amorphous system it is possible
to show [8] that with a higher disorder of the amorphous
solid the averaged spectral density increases in the region
2 = w? — zZymin = 0. We will give a proof that such an
increase at an end point of a spectrum 2pyin OT Zmax [e. g.,
all eigenvalues of each possible matrix with nonvanishing
probability P(®) are contained in the region z > 2z
and z < Zmax, respectively] is a general behavior.

II. GAUSSIAN-GENERATED DISTRIBUTION
FUNCTIONS

In a first step it is necessary to define a class of distribu-
tion functions, which are reasonably called as infinites-
imal Gaussian-generated functions: If two infinitesimal
neighboring probability distributions P(®) and P/(®)
are connected by the relation
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PI(®) = / D[®|P(® )N (')

m(P’ i
X exp (_((I’;j - @ij)_(%“l(q,;d - ‘Pkl)) ;

(4)

in which N = (det m)'/? is the norm constant, o is an
infinitesimal positive scalar value, and m(®) a symmetric
and positive-definite tensor function, e.g.,

m(®)ijkt = M(P)kuij (5)
and
m(®)ijkicijout > 0 (6)

for an arbitrary matrix o, then the probability distribu-
tion P’(®) is called an infinitesimal Gaussian generation
from P(®).

Note that because of the symmetry of the matrix ®,
it follows that

m(®)ijer = m(P) ikt = M( )ik = -+ . (7)

Principally there is the possibility, starting by a probabil-
ity distribution Py(®), to generate new probability distri-
butions, which are the basis for the next Gaussian gener-
ation and so on. In this way a tree (network) of Gaussian
generated distribution functions can be obtained, which
are based on the same root Py. It is simple to show that,
because of (4), the ensemble average (®) is a conserva-
tion value for the given network. Moreover, it can be
shown that the variance of

var;ig (@) = (Pi; Prr) — (Pis)(Pri) (8)

increases under an infinitesimal Gaussian generation.
(Note that it is reasonable to use the norm | var(®) |=
sup[var(®)a;jak | @ |72] as a measure for the strength
of the variance.) We get

var(®)’ = var(®) + 0/D<I>P(<I>)pijkl('1>) (9)

(n is the inverse value of m, e.g., Myjmntmnki = 6ikbj1)
for an infinitesimal Gaussian generation. The difference
6P(®) = P'(®) — P(P) between functional neighboring
probability distributions, which are connected by an in-
finitesimal Gaussian generation, can be written by using
the Fourier representation as

§P(®) = / D®D [%] P(®) expiki; (B!, — ®1;)}

X [exp{—%duijkl(‘pl)kijkkl} —-1]
o 0

%o -5%[ (14510 (®) P(®)]. (10)

Clearly, the inverse infinitesimal Gaussian generation
P’ — P is determined by the opposite sign. Hence an ar-

bitrary transformation between two infinitesimal neigh-
boring probability distributions P — P’ can be repre-
sented by an infinitesimal Gaussian generation P — P’
and an inverse infinitesimal Gaussian generation P’ —
P" with the difference

SP(®) = 5 5 (I () = W (B P

(11)

On the other hand, each tensor v with the same sym-
metry properties as u can be determined as a difference
of two positive definite tensors u! and u?; e.g., we get
instead of (11)

SP(®) = —%%B%H[vijkz(ﬁ)P(*P)]- (12)

Therefore, the connection between two probability dis-
tributions Py(®) and P.(®), which are separated by an
infinite set of different infinitesimal Gaussian generations
and inverse Gaussian generations, can be described by
the parabolic differential equation

OP(s, ®) _ _l 0 0
Os T4 3<§ij 0Py

[7ijkl(s7q>)P(s’q>)]’ (13)

with the path parameter s and the boundary conditions
Py(®) = P(s=0,®) and P.(®) = P(s =L, ®). On the
other hand, it follows from (9) that the behavior of the
variance var(®) is determined by the equation

L
var(¥) |, —var(¥) |0=/0 ds/D<I> P, ®)yisna(s, ®).

(14)

I11I. CHANGE OF SPECTRAL DENSITY

Now we will examine in what respect the ensemble-
average spectral density (G(z)) changes its functional
structure by a transition between two infinitesimal neigh-
boring probability distributions P and P’, which are con-
nected by a Gaussian generation (4). We use the follow-
ing representation [6] for the spectral density:

2. 0
G(z,®) = p 21_% alm InZ. (15)
Here
Z = /DZE exp{i(zéij + ’1:661]' - @,])mzxj} (16)

Using the expression (4), the ensemble average of (G(z))’
for the probability distribution P’ is given by
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(G(2)Y / D® G(z,®)P'(®)
= /D@IDf P(QI)G(z’Q’+g)N(Q’)e“Eij[mijkl(';’)/a]gkl
=/D‘1>’ P(®)G(z,®' +¢). (17)

In this expression the average G(z, ®’ + £) is the Gaussian average (determined by m and o over the difference value
& = & — &’ for an arbitrary, but fixed state ®’). For the following calculations the replica trick [9,10]

n __
InZ = lim 4 !
n—0 n

(18)

was used. Thus with (15), 16), and (18) the Gaussian averaged value G(z, ®' + £) becomes

T e—=0n—-0n
a=1

G(z,® +¢) = 2 lim lim —Im— /DmD{exp { 5 Z [(z&ij +iedi; — ®f; — &ij)xTs g”M‘?_) ] } . (19)

After a rotation of the coordmate system (in such a way that ®’ becomes a diagonal matrix A\;6;;) x — X, with £ — 5 ,
& — @&, m(®') —» m(®') [Mm(P’) fulfills the same demands as m(P’)], and the integration over the &, we get

G(z,®' +¢&) = 2 lim lim —Im— /Dxexp { Z Z(z +ie — ) (EF)% - = Zxaxaﬁ”kl(é ):zkxl } (20)

T e=0n—0n =
[i(®’) is the inverse tensor of i (®’)]. The Taylor expansion of G(z, & + £) gives, in the lowest order of o,
TET T+ = Ge.#) + 0 | GG T lowa (1)
The differential quotient in (21) follows from (20) by a simple integration over %, e.g.,

10, & ir__ \"*
S 10 __m
5O T 7 lowo= 5.l i Ztn [ ] (=)

XZZ(z—{—ze—A)(z-{—ze—A)

a,B i,j
x 1751 (8") (6ap)® + fhigis (B')(8ap)® + Hiijs(®')6anbps].  (22)
Using the symmetry relations (7), which also apply for fi;;xi, it follows that

1. & in n2
: 1 19 o
G(2, @' +§) lo=0= w!%i%nazlm <Z+i€—>\k>

: 1 ~ (& ~ (B \n2
X e R e ) 2P (B sy (Rn]
i,j J

Bijji
==l —I . 23
wei{»%az mz(z+ze—)\i)(z+ie——/\j) (23)
e
For the following interpretation we integrate this value Note that because fi is positive definite the diagonal el-
and get ements fi;;;; are always positive, e.g., h(y, ®’) is for all
y 2’ values y a positive value. With the definition

hy, ®') = / ' / GG T D) oo, (24) ,

—00 —o0 Yy , z
with B = [ @ [ axe), (26)

Ay, ®) =23 0(y — X)O(\; — ”””
. 2 Z (v =2:)6( y) Y (17), and (21), it follows that

1#:

+ Zumié(y = A). (25) §H(y)=H'(y)—H(y)=0 / D& P(®")h(y, ®'). (27)
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FIG. 1. The general structure of 6H(y) and

8F(y) = dH(y)/dy.

Therefore, the correcture of H(y) after an infinitesimal
Gaussian generation is always positive (Fig. 1)
The differential quotient

_ dH(y)

=" (28)

is the number of states whose eigenvalues are smaller than
Y, e.g.,

déH (y)

§F(y) = &

(29)
is the change of this number of states in the course of
the infinitesimal Gaussian generation. From Fig. 1 it is
simple to construct the general structure of § F(y). The
differential quotient §F(y) is a positive value for very
small values y and a negative value for very large values
y. Therefore it follows that § F(y) has at least one point
with 6F(y) = 0.

The differentiation of §F(z) = 0 with respect to z
gives the difference between the two neighboring aver-
aged spectral densities

d6F(z)
dz
This difference is positive for very small and very large

values of y and negative for at least one interval between
these two regions (see Fig. 2).

6(G(2)) = (G(2)) — (G(2)) = (30)

8 <Gizp

\ B

FIG. 2. The general structure of the function §(G(2)).

IV. DISCUSSION AND CONCLUSIONS

For a combination of an infinitesimal Gaussian genera-
tion and an inverse infinitesimal Gaussian generation we
get the same result (25), but the positive-definite tensor
[ must be replaced by the general tensor 4 with the same
symmetric properties as fi.

In Sec. IT it was shown that a transition between two
infinitesimal neighboring probability distributions with
the same average (@) is possible by using a path on
the network of infinitesimal Gaussian generations. In
the same way it is possible to find a path with an in-
finite number of steps between two arbitrary probabil-
ity functions Py and P, (with constant average (¥)) as
a solution of (13). For a path Py — P., which exclu-
sively consists of Gaussian generations, it is clear that
the change of the ensemble-averaged spectral density has
the same general behavior as the change by one Gaussian
generation. Analogically, it can be expected that for a
path with predominant Gaussian generations and only a
few inverse Gaussian generations, the ensemble-averaged
spectral density shows with a high probability the same
structural changes. In this case the norm | var(®) | of the
variance increases by a transition from Py to P,. There-
fore, the change of this norm is a reasonable parame-
ter for the characterization of the change of the spectral
density. Clearly, for a path Py — P, which consists of
inverse Gaussian generations (exclusive or predominant)
the inverted general behavior follows for the change of
(G(2)) as in the cases discussed above. Here a similar
decrease of | var(®) | is expected. If the path Py — P is
constructed by Gaussian generations and inverse Gaus-
sian generations with approximately equal portions, then
it is not always possible to give a concrete assertion on
the change of the ensemble-averaged spectral density. In
this case the behavior of the norm | var(®) | and (G(z))
is also indeterminate and it must be calculated for each
special case by us in Egs. (13), (14), and (25)—(30).
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